Prooxidant/Antioxidant Balance in Hypoxia: A Cross-Over Study on Normobaric vs. Hypobaric “Live High-Train Low”

نویسندگان

  • Tadej Debevec
  • Vincent Pialoux
  • Jonas Saugy
  • Laurent Schmitt
  • Roberto Cejuela
  • Pauline Mury
  • Sabine Ehrström
  • Raphael Faiss
  • Grégoire P. Millet
  • Antonio Gonzalez-Bulnes
چکیده

"Live High-Train Low" (LHTL) training can alter oxidative status of athletes. This study compared prooxidant/antioxidant balance responses following two LHTL protocols of the same duration and at the same living altitude of 2250 m in either normobaric (NH) or hypobaric (HH) hypoxia. Twenty-four well-trained triathletes underwent the following two 18-day LHTL protocols in a cross-over and randomized manner: Living altitude (PIO2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg in NH and HH, respectively); training "natural" altitude (~1000-1100 m) and training loads were precisely matched between both LHTL protocols. Plasma levels of oxidative stress [advanced oxidation protein products (AOPP) and nitrotyrosine] and antioxidant markers [ferric-reducing antioxidant power (FRAP), superoxide dismutase (SOD) and catalase], NO metabolism end-products (NOx) and uric acid (UA) were determined before (Pre) and after (Post) the LHTL. Cumulative hypoxic exposure was lower during the NH (229 ± 6 hrs.) compared to the HH (310 ± 4 hrs.; P<0.01) protocol. Following the LHTL, the concentration of AOPP decreased (-27%; P<0.01) and nitrotyrosine increased (+67%; P<0.05) in HH only. FRAP was decreased (-27%; P<0.05) after the NH while was SOD and UA were only increased following the HH (SOD: +54%; P<0.01 and UA: +15%; P<0.01). Catalase activity was increased in the NH only (+20%; P<0.05). These data suggest that 18-days of LHTL performed in either NH or HH differentially affect oxidative status of athletes. Higher oxidative stress levels following the HH LHTL might be explained by the higher overall hypoxic dose and different physiological responses between the NH and HH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sleep Disordered Breathing During Live High-Train Low in Normobaric Versus Hypobaric Hypoxia.

Saugy, Jonas J., Laurent Schmitt, Sibylle Fallet, Raphael Faiss, Jean-Marc Vesin, Mattia Bertschi, Raphaël Heinzer, and Grégoire P. Millet. Sleep disordered breathing during live high-train low in normobaric versus hypobaric hypoxia. High Alt Med Biol. 17:233-238, 2016.-The present study aimed to compare sleep disordered breathing during live high-train low (LHTL) altitude camp using normobaric...

متن کامل

Same Performance Changes after Live High-Train Low in Normobaric vs. Hypobaric Hypoxia

PURPOSE We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study. METHODS Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they...

متن کامل

Correction: Comparison of “Live High-Train Low” in Normobaric versus Hypobaric Hypoxia

We investigated the changes in both performance and selected physiological parameters following a Live High-Train Low (LHTL) altitude camp in either normobaric hypoxia (NH) or hypobaric hypoxia (HH) replicating current "real" practices of endurance athletes. Well-trained triathletes were split into two groups (NH, n = 14 and HH, n = 13) and completed an 18-d LHTL camp during which they trained ...

متن کامل

Ω3 Supplementation and Intermittent Hypobaric Hypoxia Induce Cardioprotection Enhancing Antioxidant Mechanisms in Adult Rats

Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammator...

متن کامل

Four weeks of normobaric "live high-train low" do not alter muscular or systemic capacity for maintaining pH and K⁺ homeostasis during intense exercise.

It was investigated if athletes subjected to 4 wk of living in normobaric hypoxia (3,000 m; 16 h/day) while training at 800-1,300 m ["live high-train low" (LHTL)] increase muscular and systemic capacity for maintaining pH and K(+) homeostasis as well as intense exercise performance. The design was double-blind and placebo controlled. Mean power during 30-s all-out cycling was similar before and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015